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The Landau-Lifshitz (LL) equations can be written as
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where m is an unit vector directed along the magnetization |r71| =1

Both the precession and the damping are induced by the same magnetic field H, which is
directed along the z- axis.
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The solution of LL equations (1) :
Temporal evolution of magnetization is described as

m, (t)=cos(m,t)-sin(6(t))
m, (t)=sin(w,t)-sin(6(¢)) (1la)
m_ (t)=cos(0(t))

where 6 is magnetization angle with respect to direction of the magnetic field H and it is
calculated as:

9(t)=2-arctan[e’”"" tan(%ﬂ (14a)

and

®, = yH_ is the Larmor frequency, w, = AH_ is the damping rate.

solution



New unknowns are defined as

m,=m +i-m, m =m . —i-m, (2)

Explicit expressions for vector products are
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Using (3) and adding/substituting the 1st and 2nd equations of (1) gives
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where the Larmor frequency o is defined as
w, =yH_ (5)
and the damping rate op is defined as
w, =AH, (6)

The substitution of Egs. (5,6) into (4) gives
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The solution of Eq.(7) can be found as
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After substitution of Eq.(8) into (7), the 1st and 2nd equations of (7) become identical as
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Combination of Eq.(9) with the 3d equation of (7) gives the system of two differential

equations:
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The solution of Egs. (10) can be found as

m, (t)=cos(6(¢))
m,, (1) =sin(6(1))

(11)

Substitution of Eq. (11) into (10) gives

cos(@)% =—w,, cos(6)sin(0)

(12)

—sin(@)% = w, sin(6)’

Two equations of (12) are identical and can be expressed as:

% =-w,sin(0) (13)

Integration of Eq.(13) gives
J- do

sin(0)
and integration gives

log(tan (gD =—w, -t+const (14)

if at time t=0 the =0

const = log(tan (%D (14)

or

tan (%t)j — " tan (%) (14)

Summing up

=—w,, -t + const (14)

from Eq (2)
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Combining with Eq. (11), temporal evolution of magnetization is described as
m, (t)=cos(e,t)-sin(6(t))
m, (t)=sin(w,t)-sin(6(¢)) (1la)

m, (t)=cos(6(t))

where

H(I):Z-arctan{e"‘”“" tan(%ﬂ (14a)




